Existence of solutions to neutral differential equations with deviated argument

نویسندگان

  • M. Muslim
  • D. Bahuguna
چکیده

In this paper we shall study a neutral differential equation with deviated argument in an arbitrary Banach space X. With the help of the analytic semigroups theory and fixed point method we establish the existence and uniqueness of solutions of the given problem. Finally, we give examples to illustrate the applications of the abstract results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and continuous dependence for fractional neutral functional differential equations

In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.

متن کامل

On Nonlinear Abstract Neutral Differential Equations with Deviated Argument

In this paper we are concerned with a neutral differential equation with a deviated argument in an arbitrary Banach space X. To study the existence and uniqueness of a solution of the problem considered, we use the theory of the analytic semigroups and the fixed point arguments. Finally, we give an example to demonstrate an application of the abstract results.

متن کامل

Almost Automorphic Mild Solutions to Some Semilinear Abstract Differential Equations with Deviated Argument in Fréchet Spaces

In this paper we consider the semilinear differential equation with deviated argument in a Fréchet space x(t) = Ax(t) + f(t, x(t), x[α(x(t), t)]), t ∈ R, where A is the infinitesimal (bounded) generator of a C0-semigroup satisfying some conditions of exponential stability. Under suitable conditions on the functions f and α we prove the existence and uniqueness of an almost automorphic mild solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008